# TOPIC 10.1: MEIOSIS

### **Homologous Pairs**

The chromosomes of sexually reproducing organisms are **homologous** (i.e. they exist in pairs)

• There is a paternal copy and a maternal copy (sex chromosomes may not be homologous)

Chromosomes will replicate during interphase to form genetically identical sister chromatids

• These chromatids are separated during meiotic division to become autonomous chromosomes



#### Random Assortment

During Metaphase I, homologous pairs of chromosomes line up in a random orientation along the equator

This means there is an equal chance of a gamete containing either the maternal or paternal copy of a given chromosome

The orientation of each homologous pair is independent to the orientation of any other homologous pair

The number of potential chromosome combinations can be determined by the formula:  $2^n$  (*where n = haploid number*)

As humans have a haploid number of 23, they can produce  $2^{23}$  gamete combinations via random assortment

•  $2^{23} > 8$  million different combinations



# **Meiotic Divisions**

Meiosis produces haploid gametes via two nuclear divisions:

- Homologous pairs are separated during meiosis I
- Sister chromatids are separated during meiosis II

The final outcome of meiosis is four genetically distinct haploid daughter cells (i.e. gametes)



# **Crossing Over**

During Prophase I, homologous pairs of chromosomes form points of connection between non-sister chromatids

The connection points form via a process known as synapsis and the resulting complex is called a bivalent (or tetrad)

While in synapsis, non-sister chromatids may break and recombine with their homologous partner (crossing over)

Crossing over may result in the exchange of alleles

The non-sister chromatids remain physically connected at points of exchange (chiasmata) until separated by anaphase

#### Recombinants

The non-sister chromatids that have had genetic material exchanged are called recombinants

• Recombination may result in novel allele combinations

