TOPIC 10.2: CHI-SQUARED TEST

Worked Example

A chi-squared test can be applied to phenotypic ratios to determine if there is a statistically significant likelihood that two particular genes are linked or unlinked

Case Study: Pea Plant Inheritance Patterns

Peas can be considered smooth (R) or wrinkled (r) and yellow (Y) or green (y)

Two heterozygous plants (RrYy) were crossed to give the following results:

- Smooth / yellow = 701 plants
- Wrinkled / yellow = 243 plants
- Smooth / green = 204 plants
- Wrinkled / green = 68 plants

Step 1: Identify Expected Frequencies

There are two possibilities regarding the phenotypic ratios of the two genes:

- Null Hypothesis (H_0) There is **no** association (i.e. genes are unlinked)
- *Alternative Hypothesis* (H_1) There is an association (i.e. genes are linked)

A table is constructed to identify expected frequencies of distribution (unlinked)

• This data will be compared against the observed values previously identified

The expected ratios are calculated using a dihybrid cross (ratios = 9:3:3:1)

· The ratios are applied to total population to determine expected frequencies

Step 2: Apply the Chi-Squared Formula

The chi-squared (χ^2) formula calculates a value based on a comparison of the observed frequencies (O) and the expected frequencies (E)

$$\Rightarrow \boldsymbol{\chi}^2 = \sum \frac{(O-E)^2}{E}$$

Based on the worked example, the value calculated by the chi-squared test is: • $\chi^2 = 0.42 + 2.53 + 0.99 + 0.84 = 4.76$

- A degree of freedom (df) will also be required to determine statistical significance
- **df** = (number of rows -1) × (number of columns -1)

Raw data table had 4 rows and 2 columns, so degree of freedom equals three

Step 3: Determine Significance

The chi-squared value is used to determine statistical significance (p value)

• p<0.05 is considered significant (less than 5% likelihood results due to chance)

Based on the worked example, a value of 4.76 lies below a p value of 0.05

• This means results are **not** significant (>5% probability it is due to chance)

The alternative hypothesis can be rejected and the null hypothesis accepted

• It is statistically unlikely that the genes are linked (they are likely unlinked)

Pea Phenotype	Observed
🥥 = smooth/yellow	701
○ = smooth/green	204
e wrinkled/yellow	243
🎯 = wrinkled/green	68
Total	1216

Pea	Ratio	Expected
\bigcirc	9/16 × 1216	684
	3/16 × 1216	228
(3/16 × 1216	228
	1/16 × 1216	76
Total	9:3:3:1	1216

Pea	0	Е	$\frac{(\mathbf{O} - \mathbf{E})^2}{\mathbf{E}}$
0	701	684	0.42
	204	228	2.53
	243	228	0.99
3	68	76	0.84

