TOPIC 10.3: GENE POOLS

Gene Pools

Evolution is the change in the *allele frequency* within a *gene pool* over several successive generations

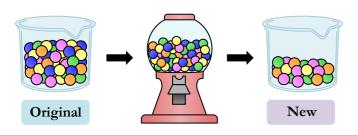
A **gene pool** is the sum total of all the genes (and the alleles) that are present within an interbreeding population

The **allele frequency** refers to the relative proportion of a particular allele within a population

Allele Frequencies

Genetic drift changes the composition of a gene pool due to random / chance events within the population

- There is higher drift in smaller populations (faster change)
- There is lower drift in larger populations (greater stability)


Natural selection changes the composition of a gene pool due to environmental selection pressures

Selection may be stabilising, directional or disruptive

Genetic Drift

Population Bottlenecks

- Population bottlenecks occur when an event reduces the population size by an order of magnitude
- Surviving population has less genetic variability (1 drift)

Founder Effect

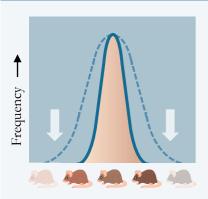
- The founder effect describes the establishment of a new population by a fraction of a larger existing population
- The new population has less genetic variability (1 drift)

Types of Selection

Stabilising Selection

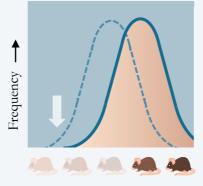
- When an intermediate phenotype is favored at the expense of extremes
- Operates when conditions are stable
- Example: Human birth weights
 - \Rightarrow Too large = birth complications
 - \Rightarrow Too small = high infant mortality

Directional Selection

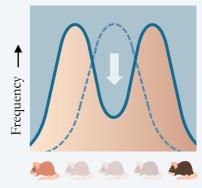

- When one phenotypic extreme is selected at the cost of the other
- Operates when conditions change
- Example: Antibiotic resistance

 - \Rightarrow No antibiotic = \uparrow susceptibility

Disruptive Selection


- When both extremes are favored at the expense of the intermediate
- Operates when conditions fluctuate
- Example: Moth pigmentation
 - ⇒ Pigmentation = camouflage
 - ⇒ Benefit depends of conditions

Stabilising Selection


Culls extreme variations
Narrows width of distribution

Directional Selection

Favours one extreme Shifts distribution left / right

Disruptive Selection

Favours both extremes
Creates bimodal distribution