TOPIC 2.7: DNA REPLICATION

Semi-Conservative

DNA replication is semi-conservative - one strand is from an original template molecule and one strand is newly synthesised

• This occurs because each base will only pair with its complementary partner and thus ensure the sequence is conserved

DNA Replication

Helicase:

- Unwinds and separates the double stranded DNA
- Breaks the hydrogen bonds between the base pairs

DNA Polymerase III

- Free nucleotides line up opposite complementary partners
- DNA Pol III covalently joins the free nucleotides together

Meselson-Stahl Experiment

The Meselson-Stahl experiment supported the theory that DNA replication occurred via a semi-conservative process

They incorporated radioactive nitrogen isotopes into DNA

- Templates were prepared with heavier ¹⁵N
- New sequences were replicated with lighter ¹⁴N

The DNA was then separated via centrifugation in order to determine its composition of radioisotopes

- 1st division: DNA had ¹⁵N and ¹⁴N (i.e. mixed)
- 2nd division: DNA is mixed or has ¹⁴N only

The results were consistent with a semi-conservative model

Polymerase Chain Reaction

The polymerase chain reaction (PCR) is an artificial method of DNA replication that is used to rapidly copy sequences

PCR occurs in a thermal cycler over three repeating steps:

- Denaturation: DNA heated in order to separate strands
- Annealing: Primers attach to ends of a target sequence
- Elongation: A heat-tolerant polymerase copies strands

A standard reaction of 30 cycles would generate 2^{30} copies of the target DNA sequence (i.e. >1 billion copies of DNA)

