TOPIC 2.7: TRANSCRIPTION & TRANSLATION

Transcription

Transcription is the synthesis of an RNA sequence from a DNA template

• This process occurs within the nucleus of a cell

Transcription is mediated by the enzyme RNA polymerase, which:

- Separates the DNA strands (breaks H bonds between base pairs)
- Covalently joins free complementary RNA nucleotides together

After transcription, the RNA is released to the cytoplasm (for translation) and the DNA remains within the nucleus and reforms a double helix

Genetic Code

The genetic code is the set of rules by which information encoded in mRNA sequences is converted into a polypeptide sequence

Codons: Triplets of bases which correspond to a particular amino acid

The order of the codons determines the amino acid sequence for a protein

- A coding sequence always begins with a start codon (AUG)
- A coding sequence is terminated with a stop codon

The genetic code has two key features:

- Universality All organisms use the same genetic code
- Degeneracy Multiple codons may code for the same amino acid

Translation

Translation is the process of polypeptide synthesis by the ribosome

- Messenger RNA (mRNA) is transported to the ribosome
- A ribosome reads an mRNA sequence in base triplets called codons
- Each codon codes for a specific amino acid (as per the genetic code)
- Amino acids are transported to ribosomes by transfer RNA (tRNA)
- Each tRNA aligns opposite a codon via a complementary anticodon
- The ribosome moves along the mRNA sequence (5' → 3') and joins amino acids together with peptide bonds (condensation reaction)
- The synthesis of a polypeptide is initiated at a start codon (AUG) and is completed when the ribosome reaches a STOP codon

Gene \rightarrow Protein

A gene is a sequence of DNA which encodes a polypeptide sequence

• One gene = one polypeptide (proteins may have multiple polypeptides)

There are exceptions to this fundamental relationship:

- Genes may be alternatively spliced (one gene = many polypeptides)
- Genes encoding tRNA or rRNA are transcribed but not translated
- · Genes may be mutated to alter the original polypeptide product

					_		
000	Phe	UCU		UAU	Tvr	UGU	Cvs
UUC		UCC	Ser	UAC	יעי	UGC	Cy 3
UUA	Leu	UCA		UAA	STOP	UGA	STOP
UUG		UCG		UAG	STOP	UGG	Trp
CUU	Leu	CCU	Pro	CAU	His	CGU	
CUC		CCC		CAC		CGC	Ang
CUA		CCA		CAA	C 1n	CGA	Arg
CUG		CCG		CAG	GTU	CGG	
AUU		ACU		AAU	Acn	AGU	Con
AUC	Ile	ACC	Thn	AAC	ASI	AGC	Ser
AUA		ACA	IIII.	AAA	LVG	AGA	Ang
AUG	Met	ACG		AAG	Lys	AGG	Arg
GUU	Val	GCU	<u> </u>	GAU	Asp	GGU	
GUC		GCC		GAC		GGC	614
GUA	var	GCA	АТА	GAA	C 1	GGA	GLY
GUG		GCG		GAG	GIU	GGG	

Three main types of RNA may be produced:

mRNA – Transcript used to make protein tRNA – Transfers amino acid to ribosome

Types of RNA