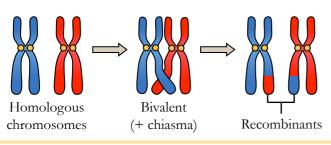

# TOPIC 3.3: MEIOSIS

## Meiosis

Meiosis is the reduction division of a diploid cell to produce four haploid cells (gametes) that are genetically distinct

It involves two divisions:

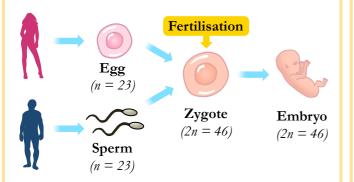
- · Meiosis I separates homologous chromosomes
- Meiosis II separates sister chromatids




| Hint: Disco Pug           | Mitosis                       | Meiosis                       |
|---------------------------|-------------------------------|-------------------------------|
| Divisions                 | One                           | Two                           |
| Independent<br>Assortment | No                            | Yes (Metaphase I)             |
| <b>S</b> ynapsis          | No                            | Yes<br>(bivalents / tetrads)  |
| <b>C</b> rossing Over     | No                            | Yes (Prophase I)              |
| <b>O</b> utcome           | Two cells                     | Four cells                    |
| <b>P</b> loidy            | $Diploid \rightarrow Diploid$ | Diploid $\rightarrow$ Haploid |
| <b>U</b> se               | Body cells                    | Sex cells (gametes)           |
| Genetics                  | Identical (clones)            | Genetic variation             |

### **Genetic Variation**

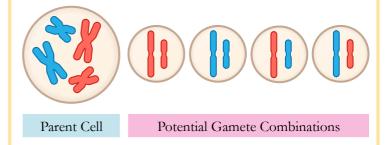
#### **Crossing Over**


- Crossing over occurs via synapsis in Prophase I
- Homologous chromosomes form bivalents (or tetrads)
- Chiasmata represent the points where genetic information has been exchanged between the homologous pair
- The non-sister chromatids that have exchanged DNA are called recombinants



## Sexual Life Cycle

The halving of chromosome number by meiosis allows for a sexual life cycle with the fusion of gametes


• This acts as a further source of genetic variation



#### Random Assortment

Mitosis versus Meiosis

- The homologous pairs orient randomly in Metaphase I
- This means there is an equal chance of a resulting gamete containing either the maternal or paternal chromosome
- As humans have a haploid number of 23, consequently there are  $2^{23}$  potential gamete combinations (>8 million)



## **Non-Disjunction**

Non-disjunction refers to chromosomes failing to separate, resulting in gametes with extra or missing chromosomes

The failure to separate may involve the homologous pairs in Anaphase I or the sister chromatids in Anaphase II

If a gamete with an extra chromosome fuses with a normal gamete, the resulting zygote will have three copies

• E.g. Trisomy 21 (Down Syndrome)

Studies show parental age influences chances of non-disjunction

• Older parents are at a higher risk of non-disjunction events