TOPIC 6.3: INNATE IMMUNITY

Innate Immunity

The innate immune responses share two key characteristics:

- They are **non-specific** (i.e. they do not differentiate between different types of pathogens)
- They are **non-adaptive** (i.e. they produce the same response to every infection there is no immunological memory)

Lymphatic System

The lymphatic system is a secondary transport system that protects the body by producing and filtering lymph

- Lymph is a clear fluid rich in white blood cells that arises from the drainage of interstitial fluid from the tissues
- Lymph is filtered at lymph nodes, whereby pathogens are removed and the fluid is returned to venous circulation

Inflammation

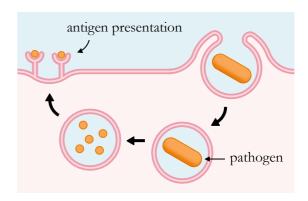
Tissue damage causes mast cells to release histamine, which triggers vasodilation and increased capillary permeability

• This improves the recruitment of white blood cells

An inflammatory response, while necessary, has side effects:

- Vasodilation = localised redness & heat (blood flow)
- Capillary permeability = swelling & tenderness (**†** *fluid*)

Inflammation can be short-term (acute) or long-term (chronic)


Phagocytosis

Macrophages and dendritic cells migrate via the blood to sites of infection (damaged cells release chemotactic agents)

The pathogens are surrounded by extensions (pseudopodia) and are then internalised within a vesicle (via phagocytosis)

The vesicle may fuse with a lysosome to digest the pathogen

• Fragments (antigens) are presented on the surface of the cell in order to activate the third line of defense (adaptive)

Fever

Fever is an abnormally high body temperature (due to infection)

- It increases metabolism and activates heat shock proteins
- · It reduces the growth rate of infectious pathogens

Fever occurs when white blood cells release cytokines

- This causes the hypothalamus to produce prostaglandin
- Prostaglandin increases the temperature of the body

While a fever may initially strengthen an immune response, beyond tolerable limits it will cause damage to the body

Complement System

Inactive complement proteins are produced by white blood cells and certain body cells (particularly the liver)

In response to immune activation, they trigger a cascade of reactions that help protect the body from infection:

- Opsonisation (increase pathogen recognition by phagocytes)
- Chemotaxis (recruitment of phagocytes to the infection site)
- Membrane attack (forms a complex that ruptures cell walls)

Natural Killer Cells

Natural killer cells are a class of non-specific lymphocytes that can target and destroy infected body cells or tumor cells

- Infected cells release chemicals called interferons, which function to promote the activation of natural killer cell
- Natural killer cells induce apoptosis in the infected cell

Natural killer cells are part of the innate immune response because they do not rely on antigen recognition to function