TOPIC 9.1: XYLEM TRANSPORT

Transpiration

Transpiration is the loss of water vapor from a plant

- Active uptake of ions by roots promotes water uptake
- Water moves up the stem of a plant by mass flow
- Water is evaporated from leaves (via stomatal pores)

The flow of water from root to leaf is the transpiration stream

Root Uptake

Soil contains anionic clay particles to which minerals attach

• Examples of cationic minerals include K⁺, Na⁺, Ca²⁺

Roots pump H⁺ ions into the soil to displace the minerals

- Displaced minerals diffuse into root (indirect active transport)
- · Water follows mineral ions into the root via osmosis

Mass Flow

Water moves up the stem via mass flow in vessels called xylem

- Pressure is high in root (*water in*) and low in leaf (*water out*)
- The pressure differential results in the mass flow of water

This capillary action is mediated by two forces:

- Cohesion (water molecules stick together by H-bonding)
- Adhesion (water molecules adhere to the xylem wall)

Evaporation

Some of the light absorbed by a leaf is transformed into heat

• This heat converts water into vapor (evaporation)

The vapor diffuses out of stomata, resulting in transpiration (transpiration is a consequence of gas exchange in the leaf)

- Transpiration rate is regulated by the stomatal guard cells
- Guard cells occlude the stomatal opening when flaccid

Xylem Structure

Diagrams of xylems contain the following features:

- The vessel elements form a continuous tube
- The remnants of fused end walls are shown as indents
- The xylem lining contains pits and pores
- It is reinforced with lignin (spiral or annular)

Water Conservation

Plants have adaptations to reduce water loss (transpiration)

Xerophytes (desert plants):

- Reduced leaves (lowers evaporative surface area)
- Thick, waxy cuticles (reduces water loss from leaves)
- Stomata in pits with hairs (traps vapor = **↓** evaporation)
- CAM physiology (only opens stomata at night)

Halophytes (salt water plants):

- Cellular sequestration (salt is stored within the vacuoles)
- Tissue partitioning (abscission of leaves containing salt)
- Salt excretion (salt is actively removal from the plant)
- Root level exclusion (roots avoid salt uptake)

Measuring Transpiration

Water transport in xylems can be modeled in various ways:

- Capillary tubing (water moves along tubing via surface tension)
- Filter paper (absorbs water due to adhesive properties)
- Porous pots (semi-permeable containers can model osmosis)

Transpiration rates in plants are measured with potometers

- Potometers measure movement of air bubble / meniscus
- More movement represents increased transpiration rate